
ELEC3300: Fall 2021 1

ELEC 3300
Introduction to Embedded Systems

Topic 6
Interrupt Organization

Prof. Vinod Prasad

Interruption
of
processor

for otherprograms

ELEC3300: Fall 2021 2

Course Overview

Timer and
Counter

Digital and Analog
Interfacing

Interrupt
Organization

Memory,
Interfacing to Memory,

Memory Timing
and applications

Motor Interfacing

Buffering and
Direct Memory Access

(DMA)

Interfacing LCD

USART, IEEE1394,
USB, I2C and SPI

To be covered In progress Done

Microcontroller Structure
A/D Port

Assembler

Instruction Set Architecture

Memory I/O System

Datapath & Control

CPU Serial Port

External Memory Port

External Interrupt Port

Simple I/O Port

In this course, STM32 is used as a driving vehicle for delivering the concepts.

External Timer Port

MCU Main Board

Basic Computer
Structure

Introduction to
Embedded Systems

More about
Embedded Systems

3

• On successful completion of this topic, you will be able to:
– Understand the TWO mechanisms (Polling and Interrupt) which control

I/O activity whereby a device that needs CPU’s attention to serve its
request.

– Compare polling I/O with interrupt-driven I/O.

– Understand the timing diagram of interrupt service routine.

– Evaluate several issues related to:
• Identification of which device caused the interrupt.
• Nested and simultaneous interrupts.

– Understand the interrupt organization in ARM micro-controller.
– Analyze the factors that need to be considered while deciding on

polling or interrupt during a practical implementation.

Expected Outcomes

ELEC3300: Fall 2021

ELEC3300: Fall 2021 4

A switch is connected to MCU board

PA0

ARM

Physical
Devices

Pin
Assignment

Signal Type Initialization
(Configuration)

Signals at
Physical
connection

Micro Switch General
Purpose Input
& Output

Input / Output General
Purpose IO
setting

On/Off

Description

Abstract idea of project
(Define the functionality of the system)

Data format / representation

Programming Language

Communication Protocol

Physical connection (Pins assignment)

Hardware devices
(Microcontroller, Peripherals)

Active LOW

ELEC3300: Fall 2021 5

A Practical Industry Scenario
Heat Exchanger

How do we address the needs of multiple devices?
Which device should be serviced first? What are the schemes?

Multiple devices (SW1 to SW4) connected
to CPU for servicing.

PA1

PA2

PA3

Polling and

Interrupts

Fs

ELEC3300: Fall 2021 6

• Polled I/O requires the CPU to ask a device if the device requires servicing
– For example, if the devices have changed status
– Software polls the devices to know when a device will be serviced

Polling

• Polling requires code to loop until
the device is ready
– Consumes a lot of CPU cycles
– Have a guaranteed delay but some

applications do not have a
predictable delay (e.g. In loading a
printer buffer with text, the buffer can
run out before the printer is polled
again and thus printing stops)

PA0

ARM

P
ro

gr
am

 c
od

e

Ask the device

Description

Abstract idea of project
(Define the functionality of the
system)

Data format / representation

Programming Language

Communication Protocol

Physical connection (Pins
assignment)

Hardware devices
(Microcontroller, Peripherals)

Writing a polling algorithm (Single device)
• Initialization

• Configure a GPIO as an appropriate function
(say, input or output port)

• Implementation
• Write a while-loop / if-then-else loop for checking

the status of the GPIO

main()
{

Configure PA0 as input port
while()
{

Check if PA0 is pressed,
if yes, …. ; break
if not, …. ; back to while loop

}
}

ELEC3300: Fall 2021 7

Initialization

implementation

P
ro

gr
am

 c
od

e

Ask the device

Description

Abstract idea of project
(Define the functionality of the
system)

Data format / representation

Programming Language

Communication Protocol

Physical connection (Pins
assignment)

Hardware devices
(Microcontroller, Peripherals)

ELEC3300: Fall 2021 8

Polling in multiple devices
• Polled I/O requires the CPU to ask devices if the devices require servicing

CPU
Ask the devices one by one

D1

D2

D3 D4

D5

D6 D7

D8

D9 Next Instruction

Loop Back
Description

Abstract idea of project
(Define the functionality of the
system)

Data format / representation

Programming Language

Communication Protocol

Physical connection (Pins
assignment)

Hardware devices
(Microcontroller, Peripherals)

pollingcannot

skip
orby pass

INKAtEngberg
delay

Writing a polling algorithm (Multiple devices)
• Initialization

• Configure a GPIO as an appropriate function (say,
input or output port)

• Implementation
• Write a while-loop / if-then-else loop for checking

the status of the GPIO
main()
{

Configure PA0, PA1, …., as input ports *
while()
{

Check if PA0 is pressed,
if yes, …. ; break

Else Check if PA1 is pressed,
if yes, …..; break

Otherwise, …… ; back to while loop
}

}

9

Initialization

implementation

P
ro

gr
am

 c
od

e

Ask the devices

* remark

Description

Abstract idea of project
(Define the functionality of the
system)

Data format / representation

Programming Language

Communication Protocol

Physical connection (Pins
assignment)

Hardware devices
(Microcontroller, Peripherals)

Tradeoff: Programming is easy, Latency is large.

ELEC3300: Fall 2021 10

• Efficient alternative to Polling.
• Interrupt I/O allows the device to interrupt the CPU

announcing that the device requires attention
– This allows CPU to ignore devices unless they request

servicing via interrupt
• Interrupts do not require code to loop until the device

is ready
– Device interrupts CPU when it needs attention
– Code can go off to do other things

Interrupts

EXTI0
(PA0)

ARM

Clear the interrupt flag once interrupt service routine is over.

EXTI0 - External
Interrupt

Disadvantage: Software does not know when an interrupt will occur, and this makes
it more difficult to write code

ELEC3300: Fall 2021 11

Interrupts
Interrupt I/O allows the device to interrupt the CPU announcing that the
device requires attention

CPU
Send request to CPU

D1

D2

D3 D4

D5

D6 D7

D8

D9

Provide Interrupt Service

Description

Abstract idea of project
(Define the functionality of the
system)

Data format / representation

Programming Language

Communication Protocol

Physical connection (Pins
assignment)

Hardware devices
(Microcontroller, Peripherals)

12

Interrupt Service Routine (ISR)

ELEC3300: Fall 2021

For every interrupt, there is an interrupt service routine (ISR), or interrupt
handler, which is the block of codes that executes the servicing.

When an interrupt occurs, the microcontroller runs the ISR.

For every interrupt, there is a fixed location in memory that holds the
address of its ISR.

The table of memory locations set aside to hold the addresses of ISRs is
called as the Interrupt Vector Table.

ISR is also called device driver in case of the hardware interrupts and
called exception handler in the case of software interrupts.

13

Hardware and Software Interrupts

ELEC3300: Fall 2021

Hardware Interrupt

An electronic alerting signal sent to the processor from an external device, like
a disk controller or an external peripheral.
Example: When we press a key on the keyboard or move the mouse, they
trigger hardware interrupts which cause the processor to read the keystroke or
mouse position.

Software Interrupt

Caused either by an exceptional condition or a special instruction in the
instruction set which causes an interrupt when it is executed by the processor.

Example: If the processor’s ALU runs a command to divide a number by
zero, to cause a divide-by-zero exception, thus causing the computer to
abandon the calculation or display an error message.

14

CPU saves current context (Program Counter, Registers, etc)

CPU grabs address of the interrupt service handler (routine) from a vector table
(each interrupt has an index into the table)

CPU executes the interrupt service handler

Interrupt service handler does operations, clears
flags etc

Interrupt service handler exits

CPU restores context (Program Counter, Registers, etc) and
returns to main flow

What happens when Interrupt occur?

ELEC3300: Fall 2021

ELEC3300: Fall 2021 15

• Before an Interrupt Service Routine (ISR) is executed, it must save away
the current program’s registers (if it touches those registers)

Timing diagram of Interrupts

•Pushing the PC, registers etc. onto the stack register
•Disable subsequent interrupts of the same type from
occurring. However, interrupts of a higher priority can
still occur.

•Popping the PC, registers etc onto the stack
•Enable subsequent interrupts of the same
type from occurring.

Start of IRQ (Interrupt
Request)

Start of ISR

16

What causes Interrupt Latency?

ELEC3300: Fall 2021

Interrupt latency: Delay between the start of an Interrupt
Request (IRQ) and the start of the respective Interrupt Service
Routine (ISR).

Reasons for interrupt latency:

- Processor has to complete the current instruction.

- Interrupts are disabled when the processor accesses critical
OS data structures.

- If an ISR is already executing and cannot be interrupted, then
this also increases the interrupt latency.

Writing an interrupt algorithm
• Initialization

• Select an appropriate pin (PA0) for handling interrupt signal
• Write an ISR for handling this interrupt signal
• Activate ISR by setting the corresponding Interrupt Request (IRQ)

channel

main()
{

Configure PA0 as input port. (INT0
as interrupt signal)
Enable the IRQ channel
while()
{

Program code
………

}
}

ELEC3300: Fall 2021 17

Initialization

implementation

ISR_INT0()
{

Program code for ISR
………

Clear the interrupt pending bit
}

P
ro

gr
am

 c
od

e ISR

implementation

18

Polling: You see the clock every few hours to check whether it
is time to wake up!

Polling v/s Interrupt

The most important reason why the interrupt method is preferable is that the polling
method wastes much of the microcontroller’s time by polling devices that do not need
service.

In Interrupt method, microcontroller can serve many devices based on the priority
assigned to it.

The polling method cannot assign priority because it checks all devices in a round-
robin fashion.

You are going to bed at night and want to get up at 6 am
the next day.

Interrupt: Sleep peacefully and wake up when alarm rings.

ELEC3300: Fall 2021

ELEC3300: Fall 2021 19

INTERRUPT POLLING
1 The device notices the CPU that it requires its

attention.
CPU steadily checks whether the device needs
attention.

2 Not a protocol, it is a hardware mechanism. It is a protocol, not a hardware mechanism.

3 The device is serviced by interrupt handler (ISR). The device is serviced by CPU.

4 Interrupt can take place at any time. CPU steadily ballots the device at regular or
proper interval.

5 Interrupt request line is used as indication for
indicating that device requires servicing.

Command ready bit is used as indication for
indicating that device requires servicing.

6 Processor is evoked only when any device
interrupts it.

Processor waste many processor cycles by
repeatedly checking the command-ready little bit
of each device.

Polling v/s Interrupt

Choosing between Polling and Interrupts

ELEC3300: Fall 2021 20

Polling must be done sufficiently fast to ensure that data is not lost.

I/O devices such as printers, keyboards, etc. require that the CPU execute some code to
“service” the device. For example, incoming characters have to be read from a data
register on the peripheral interface and stored in a buffer.

If a serial interface can receive up to 1000 characters/second and can only store the last
character received, it must be checked at least once per millisecond to avoid losing data
→ Speed is a concern in polling.

Polling introduces a fixed overhead for each installed device.

Because we need to periodically check each device, irrespective of whether it requires
service or not.
No such fixed overhead in Interrupts because ISR is executed ONLY when device
needs attention.

Polling routines must be integrated into each and every program that will use that
peripheral. Programs must be written to periodically poll and service all the
peripherals they use.

Choosing between Polling and Interrupts

ELEC3300: Fall 2021 21

Is Interrupt a perfect method?
Interrupt Latency: Responding to an interrupt typically requires executing additional clock
cycles to save the processor state, fetch the interrupt number and the corresponding
interrupt vector, branch to the ISR and later restore the processor state.

Some factors to consider when deciding whether to use polling or interrupts include:

- Can the device generate interrupts?

If the peripheral is very simple then it may not have been designed to generate
interrupts.

- How complex is the application software?

If the application is a complex program that would be difficult to modify in order to
add periodic polls of the hardware then you may have to use interrupts.

On the other hand, if the application is a controller that simply monitors some
sensors and controls some actuators then polling may be the best approach.

Choosing between Polling and Interrupts

ELEC3300: Fall 2021 22

What is the maximum time allowed between polls?

If the device needs to be serviced with very little delay then it may not be practical to
use polling.

What fraction of polls are expected to result in data transfer?

If the rate at which the device is polled is much higher than the average transfer
rate, then a large fraction of polls will be “wasted”.

Using interrupts will reduce this polling overhead.

General Guideline (Take home Message): Use interrupts when the overhead due
to polling would consume a large percentage of the processor time or would
complicate the design of the software.

Choosing between Polling and Interrupts

ELEC3300: Fall 2021 23

Practical Case Study-1:
You are designing a steam boiler control system in which the steam pressure in the
boiler is monitored by a pressure sensor. If the pressure suddenly rises to a
dangerously high value, the processor must take rapid action to reduce the pressure.
Assume that there are no other external devices interfaced with the processor that
needs processor’s attention/action. Would you use Polling or Interrupt?

Considerations:

Are there many devices connected to the processor?

If yes, polling many devices will consume time, may cause delay in attending the
emergency.

If no, polling would be a suitable choice because immediate attention of the processor
is possible.

What if we use Interrupt in this case?

Interrupt latency is a concern.

Choosing between Polling and Interrupts

ELEC3300: Fall 2021 24

Practical Case Study-2:
In a general purpose microcomputer, a range of devices are connected which include
switches, keyboards, printers, modems, etc. Some of the devices operate at low speed
(such as a manually operated switch), while others operate at higher speeds. What
would be your choice – Polling or Interrupt?

Considerations:
Are there many devices connected to the processor?

What if we use Polling in this case?
System will fail to satisfy the demand of critical devices (that need fast response).

What is the action response time (speed) expected by the devices – Some demands
immediate response whereas others can wait?

Do we need to define priority for different devices?

Interrupt would be a better choice.

No provision for setting up priority.

ELEC3300: Fall 2021 25

• Enabling/disabling interrupt (all or some)
– Can be enabled / disabled by hardware or software
– Those interrupts that can be enabled / disabled by programmer are called

Maskable Interrupts.
– Non-Maskable Interrupts cannot be disabled by programmer.
– Examples of non-maskable interrupt: Internal system chipset errors, memory

corruption problems, parity errors and high-level errors which need immediate
attention.

– Non-maskable interrupt is a way to prioritize certain signals within the
operating system.

• Identification of which device caused the interrupt

• Handling simultaneous interrupts

• Handling nested interrupts: A new interrupt to be processed, even before it
finishes handling the current interrupt. This enables you to prioritize
interrupts and make improvements to the latency of high priority events.

Interrupts: Issues to be dealt with

26

• The problem is: CPU has received an interrupt
request, but which device caused the interrupt?

• Solution: One approach is simple polling of the
status flags in each device’s interface. In
programming terms, there is a ‘skip chain’.

Identification of Interrupting Device

Problem with this approach is time wasted in ‘skip-chain’ processing, especially when
there are many possible interrupting devices.

Skip chain

Save program registers

ELEC3300: Fall 2021 27

• Instead of programmed device identification, the device supplies the CPU
with interrupt vector using an “Interrupt Acknowledge” bus cycle.

• Interrupt vectors are memory addresses which inform the CPU as to
where to find the ISR (interrupt handler).

Identification of Interrupting Device

The interrupting device sends a self-identifying code back to the CPU during the
“Interrupt ACK” cycle

ELEC3300: Fall 2021 28

• When there is the possibility of several devices interrupting
– How to handle if a second interrupt request occurs while a previous interrupt is

being serviced?
– How to handle if two devices make interrupt requests during the same machine

cycle?
• It is often the case that one device have priority over another (e.g. real-

time clock v/s printer)
• Device A should be allowed to interrupt the serving of Device B if only if

A’s priority is higher than B’s.
• Similarly, if A and B interrupt simultaneously, A should be serviced first.

• On deciding the interrupt priority, there are two main approaches:
– Daisy-chaining of the acknowledge line (simplest)
– Use of a specialized Priority Interrupt Controller

Nested and Simultaneous Interrupts

ELEC3300: Fall 2021 29

Daisy-Chaining
Serial connection of all the devices which generate an interrupt signal. The
interrupt line request is common to all devices.

The device with the highest priority is placed at the first position followed by
lower priority devices (in decreasing order of priority).
The CPU responds to the interrupt by enabling the interrupt acknowledge
line. This signal is received by the Device-1. The acknowledge signal passes
to Device-2 only if Device-1 is not requesting an interrupt.

Common interrupt line request

Highest priority
device

Lowest priority
device

Pros: Easy to program

Cons: Latency to address
interrupt request
increases with the
number of devices.

ELEC3300: Fall 2021 30

In-class activity

Interrupts – Topic 6: Questions 1 - 4

31

Instead of the device communicating directly with the CPU, the PIC will
communicate with the CPU after checking the interrupts (PIC is like an
outsourcing agent – makes CPU free from interrupt checking procedures).

Priority Interrupt Controller

control

A priority interrupt controller (PIC) is used to place interrupt requests into a
hierarchy.

- Extra chip.
- Cost.
- Power and

Space.

CONS:

PIC suitable for large number of priority interrupts.

ELEC3300: Fall 2021 32

Nested Interrupts
• Interrupts can occur within interrupts Which has higher priority – ISR1 or ISR2?

What will be the timing diagram if ISR1 has higher priority over ISR2?

What will be the timing diagram if ISR3 that has a higher priority over ISR2
occurs when ISR2 is being executed?

• Nested vectored interrupt controller (NVIC)
Prioritizes interrupts, provides scheme for handling the
interrupts that occur when CPU is processing a previously
occurred interrupt, ensures that higher priority interrupts
are serviced first.

• Features:
- 68 interrupt lines
- 16 programmable priority levels
- Low-latency expectation and interrupt handlin
- Power management control: System Control
Registers used to control low-power features (e.g.,
sleep modes).
• Reference:
- Table 61 Vector table for connectivity line devices
(intended for applications where connectivity and real-time
performances are required - industrial control, control panels for
security applications, ethernet)
- Table 62 Vector table for XL-density devices

33

STM32 Interrupts

XL-density devices are STM32F101xx and STM32F103xx microcontrollers where density
of Flash memory ranges between 768 Kbytes and 1 Mbyte.

http://www.longlandclan.yi.org/~stuartl/stm32f10x_stdperiph_lib_um/Library_Devices_Toolchains.html

• Features:
– Up to 20 edge detectors (rising/falling edge in EXTI line) in connectivity

line devices
– Up to 19 edge detectors in other devices for general event / interrupt

requests
– Independent trigger and mask on each interrupt / event line
– Dedicated status bit for each interrupt line
– Generation of up to 20 software event / interrupt requests (e.g. Timer) 34

STM32 External interrupt / event controller (EXTI)
Interrupts typically execute a few lines of code whereas Events do not
necessarily execute code but can signal another peripheral to do something
without processor intervention.
Events are normally handled synchronously: the program explicitly waits for
an event to be serviced, whereas an interrupt can demand service at any time.
Event example: A timer can generate an event to tell an ADC to sample and then write
the measured value to memory using DMA without ever waking up the processor.

35

STM32 Interrupts

• The priority of external interrupts can
be done by the hardware configuration.

• Example 1:
– Device 1 is connected to PA1
– Device 2 is connected to PB0
Which one has a highest priority?

• Example 2:
– Device 1 is connected to PA1
– Device 3 is connected to PB1
Which one has a highest priority?

• Example 3: How can we make Device
1 high priority compared to Device 2?

According to Table 61

Lowest Priority

Highest Priority

Use polling to check Device 1 first. In
principle, hardware does not assign any
priority, you have to do it in software.

ELEC3300: Fall 2021 36

In-class activity

Topic 6: Questions 5 - 8

ELEC3300: Fall 2021 37

• Do you
– Describe two I/O interfacing techniques: polling I/O and interrupt-driven

I/O ?
– Distinguish the concepts and signaling in polling and interrupt-driven

I/O ?
– List the timing diagram of interrupt service routines?
– Handle several issues deal with interrupts ?
– Configure the interrupt settings in ARM micro-controller ?

Reflection (Self-evaluation)

ELEC3300: Fall 2021 38

Course Overview

Timer and
Counter

Digital and Analog
Interfacing

Interrupt
Organization

Memory,
Interfacing to Memory,

Memory Timing
and applications

Motor Interfacing

Buffering and
Direct Memory Access

(DMA)

Interfacing LCD

USART, IEEE1394,
USB, I2C and SPI

To be covered In progress Done

Microcontroller Structure
A/D Port

Assembler

Instruction Set Architecture

Memory I/O System

Datapath & Control

CPU Serial Port

External Memory Port

External Interrupt Port

Simple I/O Port

In this course, STM32 is used as a driving vehicle for delivering the concepts.

External Timer Port

MCU Main Board

Basic Computer
Structure

Introduction to
Embedded Systems

More about
Embedded Systems

